Un colaborador del profesor Francho ha redactado el siguiente artículo que ayudará a comprender las propiedades del carbono de que se habla en "Vida carbonosa".
La evolución de la tabla periódica, desde la primera ordenación de los elementos, ha tenido lugar a lo largo de más de un siglo de historia y ha ido pareja al desarrollo de la ciencia. Aunque los primeros elementos conocidos, como el oro y el hierro se conocían desde antes de Cristo (recuérdese que el hierro, por su importancia en la evolución de la humanidad ha dado nombre a una época), todavía hoy se investiga la posible existencia de elementos nuevos para añadir a la tabla periódica.
Como en la naturaleza la mayoría de los elementos se encuentran combinados formando compuestos, hasta que no fue posible romper estos compuestos y aislar sus elementos constituyentes, su conocimiento estuvo muy restringido. Fue en el año 1800 cuando se descubrió el fenómeno de la electrólisis (ruptura de un compuesto mediante el uso de energía eléctrica ). Este descubrimiento impulsó un salto hacia delante en el descubrimiento de nuevos elementos. Así, de poco más de diez que se conocían hasta el Siglo XVIII, en el que se habían descubierto los elementos gaseosos (hidrógeno, oxígeno, nitrógeno y cloro) y algunos metales (platino, níquel, manganeso, wolframio, titanio vanadio y plomo), en las primeras décadas del siglo XIX se descubrieron más de 14 elementos, y posteriormente, a ritmo algo más lento se siguieron descubriendo otros nuevos.
Así, en 1830 se conocían ya 55 elementos diferentes, cuyas propiedades físicas y químicas variaban extensamente. Fue entonces cuando los químicos empezaron a interesarse realmente por el número de elementos existentes. Preocupaba saber cuántos elementos diferentes existían y a qué se debía la variación en sus propiedades. Sería Berzelius quien llevase a cabo la primera agrupación de los elementos, ordenándolos alfabéticamente e incluyendo el dato de su peso atómico. Sin embargo, esta agrupación no atrajo el interés de los científicos de la época.
Hasta ese momento, nadie parecía haber advertido la posible periodicidad en las propiedades de los elementos químicos, entre otras razones, porque el número de elementos que quedaban por descubrir dejaba demasiados huecos como para poder atisbar orden alguno en las propiedades de los mismos. Además, todavía no existía un criterio claro para poder ordenar sus propiedades, ya que el peso atómico de un elemento, que fue el primer criterio de ordenación de los elementos, no se distinguía con claridad del peso molecular o del peso equivalente.
El químico alemán Döbereiner realizo el primer intento de establecer una ordenación en los elementos químicos, haciendo notar en sus trabajos las similitudes entre los elementos cloro, bromo y iodo por un lado y la variación regular de sus propiedades por otro. Una de las propiedades que parecía variar regularmente entre estos era el peso atómico. Pronto estas similitudes fueron también observadas en otros casos, como entre el calcio, estroncio y bario. Una de las propiedades que variaba con regularidad era de nuevo el peso atómico. Ahora bien, como el concepto de peso atómico aún no tenía un significado preciso y Döbereiner no había conseguido tampoco aclararlo y como la había un gran número de elementos por descubrir, que impedían establecer nuevas conexiones, sus trabajos fueron desestimados.
Ante la dificultad que la falta de definición del concepto de los pesos de las especies suponía, y el creciente interés que el descubrimiento de los elementos y de otros avances científicos suscitaba, otro ilustre químico, Kekulé, tomo una histórica iniciativa, que consistió en convocar a los químicos más importantes de toda Europa para llegar a un acuerdo acerca de los criterios a establecer para diferenciar entre los pesos atómico, molecular y equivalente. Esta convocatoria dio lugar a la primera reunión internacional de científicos de la historia y tuvo consecuencias muy importantes, sobre todo gracias a los trabajos del italiano Avogadro, que brillantemente expuestos en la reunión por su compatriota Cannizzaro, llevaron a la consecución del esperado acuerdo que permitiría distinguir al fin los pesos atómico, molecular y equivalente. Así, algunos químicos empezaron a realizar intentos de ordenar los elementos de la tabla por su peso atómico.
Fue en 1864 cuando estos intentos dieron su primer fruto importante, cuando Newlands estableció la ley de las octavas. Habiendo ordenado los elementos conocidos por su peso atómico y después de disponerlos en columnas verticales de siete elementos cada una, observó que en muchos casos coincidían en las filas horizontales elementos con propiedades similares y que presentaban una variación regular. Esta ordenación, en columnas de siete da su nombre a la ley de las octavas, ya que el octavo elemento da comienzo a una nueva columna. En algunas de las filas horizontales coincidían los elementos cuyas similitudes ya había señalado Döbereiner. El fallo principal que tuvo Newlands fue el considerar que sus columnas verticales (que serían equivalentes a períodos en la tabla actual) debían tener siempre la misma longitud. Esto provocaba la coincidencia en algunas filas horizontales de elementos totalmente dispares y tuvo como consecuencia el que sus trabajos fueran desestimados.
Más acertado estuvo otro químico, Meyer, cuando al estudiar los volúmenes atómicos de los elementos y representarlos frente al peso atómico observo la aparición en el gráfico de una serie de ondas. Cada bajada desde un máximo (que se correspondía con un metal alcalino) y subido hasta el siguiente, representaba para Meyer un periodo. En los primeros periodos, se cumplía la ley de las octavas, pero después se encontraban periodos mucho más largos. Aunque el trabajo de Meyer era notablemente meritorio, su publicación no llego a tener nunca el reconocimiento que se merecía, debido a la publicación un año antes de otra ordenación de los elementos que tuvo una importancia definitiva.
Utilizando como criterio la valencia de los distintos elementos, además de su peso atómico, Mendeleiev presentó su trabajo en forma de tabla en la que los periodos se rellenaban de acuerdo con las valencias (que aumentaban o disminuían de forma armónica dentro de los distintos periodos) de los elementos. Esta ordenación daba de nuevo lugar a otros grupos de elementos en los que coincidían elementos de propiedades químicas similares y con una variación regular en sus propiedades físicas. La tabla explicaba las observaciones de Döbereiner, cumplía la ley de las octavas en sus primeros periodos y coincidía con lo predicho en el gráfico de Meyer. Además, observando la existencia de huecos en su tabla, Mendeliev dedujo que debían existir elementos que aun no se habían descubierto y además adelanto las propiedades que debían tener estos elementos de acuerdo con la posición que debían ocupar en la tabla. Años más tarde, con el descubrimiento del espectrógrafo, el descubrimiento de nuevos elementos se aceleró y aparecieron los los que había predicho Mendeliev. Los sucesivos elementos encajaban en esta tabla. Incluso la aparición de los gases nobles encontró un sitio en esta nueva ordenación. La tabla de Mendeliev fue aceptada universalmente y hoy, excepto por los nuevos descubrimientos relativos a las propiedades nucleares y cuánticas, se usa una tabla muy similar a la que él elaboró más de un siglo atrás.
La Tabla Periódica: ¿Qué es?
Se trata de una ordenación de los elementos de acuerdo con sus propiedades químico-físicas (actualmente el criterio de ordenación es el número atómico, es decir, el número de protones que contiene el núcleo del átomo). La tabla periódica indica ciertas propiedades químico físicas de cada elemento. En las más sencillas, suele indicarse el símbolo, el número atómico y la masa. En las tablas más completas se indica un gran número de propiedades, como la electronegatividad --la electronegatividad mide la tendencia que tiene un átomo de atraer hacia sí los electrones compartidos en un enlace covalente-- , potenciales de ionización --se trata de la energía necesaria para extraer un electrón de un átomo y convertirlo en un ion positivo-- , temperaturas de fusión y ebullición, estructura cristalina, etc.
La Tabla Periódica Hoy en Día
Con el desarrollo de la mecánica cuántica y de la física nuclear, se han descubierto criterios muy precisos para poder ordenar de forma definitivamente los elementos. En lugar del peso atómico, ahora se utiliza el número atómico como criterio principal, y la es la estructura electrónica de la capa de valencia (número y situación de los electrones de la última capa electrónica ocupada de un átomo de un elemento)
La tabla se puede dividir en filas horizontales y columnas verticales. Las filas constituyen periodos, a lo largo de los cuales el número atómico aumenta (y el peso atómico, por tanto aumenta también). A su vez, los electrones van completando la capa de valencia, lo que provoca variaciones armónicas en las propiedades físico-químicas de los elementos. Todos los elementos de un periodo tienen el mismo número de capas electrónicas completas. Es la última capa la que se va completando a medida que se avanza por éste.
Las columnas de la tabla constituyen familias de elementos, que tienen en común la estructura electrónica. Debido a ello presentan importantes similitudes en sus propiedades químicas y físicas y variaciones muy regulares de las mismas. Ejemplos de familias importantes son la de los metales alcalinos(IA), familia del oxígeno (VIA) halógenos(VIIA)
De izquierda a derecha aumenta el número atómico y la electronegatividad, a la vez que disminuye el radio. De arriba a abajo aumenta el radio y el número atómico, y disminuye la electronegatividad. Teniendo en cuenta la periodicidad de los elementos de la tabla, podemos hacernos una idea de lo enormemente útil que nos resulta la tabla periódica, ya que nos permite predecir las propiedades de un elemento a partir de su posición en la tabla periódica, por similitud con las de otros conocidos de su familia o periodo.
© Vicente Barrachina Loras